Uji F Homogenitas Dua Varian


Daftar Isi


Persiapan data

A <- c(63.9, 64.7, 54.8, 62.6, 66.3, 63.2, 68.3, 55.2, 65.7, 49.3,
       65, 62.5, 68, 65.6, 60.5, 68.5, 60.7, 67.7, 71.3, 73.6,
       53.1, 59.6, 63.1, 62.1, 79.7, 61.6, 64.3, 66.8, 64, 65.5,
       65.6, 60.5, 68.5, 62.6, 66.3, 63.2, 53.1, 59.6, 63.1, 62.1)

B <- c(71.7, 80.3, 62.4, 65, 66.4, 76.5, 70.4, 74.1, 73, 67.8,
       70.6, 66.4, 65.3, 70.7, 74, 74.3, 74, 75.2, 75, 76.2,
       71.7, 73.5, 64.5, 69.4, 65.4, 73, 66.9, 75.9, 72.8, 76,
       70.6, 66.4, 65.3, 70.7, 65, 66.4, 76.5, 71.7, 73.5, 64.5)

Hipotesis

H0 : \(\sigma_1^2 = \sigma_2^2\)
H1 : \(\sigma_1^2 \neq \sigma_2^2\)

Statistik Uji

\[F_{hitung} = \frac{s_1^2}{s_2^2}\]

F.hitung <- var(A)/var(B)

Kriteria Uji

  1. Jika \(F_{hitung} < F_{\alpha(v_1, v_2)}, \) maka H0 diterima
  2. Jika \(F_{hitung} \geq F_{\alpha(v_1, v_2)}, \) maka H0 ditolak

Daerah Kritis

\[F_{\alpha(v_1, v_2)}\] \(v_1 = n_1 - 1\)
\(v_2 = n_2 - 1\)

F.tabel <- qf(1-0.05, length(A)-1, length(B)-1)

Kesimpulan

if (F.hitung > F.tabel) {
        print("tolak Ho")
} else {
        print("terima Ho")
}

Validasi Hasil

var.test(A, B)